Design of zeolitic materials and their advanced characterization by high resolution electron microscopy
Contact person and project supervisor: Dr. Michal Mazur michal.mazur@natur.cuni.cz
Research group: Heterogeneous catalysis and advanced materials
Leader of the research group: Prof. Jiri Cejka jiri.cejka@natur.cuni.cz
Department: Physical and Macromolecular Chemistry
Web pages of the research group: http://www.cucam.cuni.cz/
http://physchem.cz/research/heterogeneous-catalysis-and-advanced-materials/
Project summary:
Zeolites are porous aluminosilicates finding their applications in catalysis, sorption and ion-exchange due to their properties i.e. high adsorption capacity, defined microporosity (resulting in molecular sieving effect), adjustable chemical composition, and possibility for post-synthesis modifications. Conventional synthesis of zeolites uses solvothermal methods that are limited in term of control and design of the process. On the contrary, recently developed ADOR synthesis approach (Assembly, Disassembly, Organization, Reassembly) gives the possibility to design the final products and prepare different type of porous materials by post-synthesis manipulations (using 2D zeolite precursors). Design of novel zeolitic materials and their advanced characterization by electron microscopy methods are general aims of proposed PhD thesis. The synthesized materials will be investigated for their potential use e.g. in catalysis. The PhD work will include: 1) the application of established synthetic techniques (e.g. solvothermal synthesis, ADOR approach, swelling, pillaring, and functionalization, 2) development of novel synthesis strategies, and 3) characterization of synthesized material by electron microscopy and diffraction methods (including novel techniques like Continuous Rotation Electron Diffraction (cRED). The PhD work should result in preparation of new zeolitic materials and their thorough description by use of advanced characterization methods.
Five relevant publications of the research group:
Wieslaw J. Roth, Petr Nachtigall, Russell E. Morriss, Paul S. Wheatley, Valerie Seymour, Sharon E. Ashbrook, Pavla Chlubná, Lukáš Grajciar, Miroslav Položij, Zrnošt Zukal, Oleksiy Shvets, Jiří Čejka, "A family of complex zeolites with controlled pore size prepared through a 'top down'method", Nature Chemistry, 5 (2013) 628.
Pavla Eliášová, Maksym Opanasenko, Paul Wheatley, Mariya Shamzhy, Michal Mazur, Petr Nachtigall, Wieslaw J. Roth, Russell E. Morris, Jiří Čejka, “The ADOR mechanism for the synthesis of new zeolites”, Chemistry Society Reviews, 44 (2015) 7177.
M. Mazur, P. S. Wheatley, M. Navarro, W. R. Roth, M. Polozij, A. Mayoral, P. Eliasova, P. Nachtigall, J. Cejka, R. E. Morris, “Synthesis of ‘unfeasible’zeolites”, Nature Chemistry, 8 (2016) 58-62.
S. E. Henkelis, S. A. Morris, M. Mazur, P. S. Wheatley, L. N. McHugh and R. E. Morris, “Monitoring the assembly–disassembly–organisation–reassembly process of germanosilicate UTL through in situ pair distribution function analysis”, Journal of Materials Chemistry A, 2018, 6, 17011-17018.
Kasneryk, V., Shamzhy, M., Zhou, J. et al. Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nature Communications 2019, 10, 5129.
Current research grants of the group:
EXPRO GAČR (19-27551X)