Polyploidization (whole genome duplication) is widely regarded as an important mechanism of sympatric speciation, particularly in plants where it drives reproductive isolation of many crop species from their wild relatives. While often perceived as a strong and instantaneously forming reproductive barrier, empirical data show its strength may vary considerably across plants.

In the project, the successful applicant will be assessing rates and evolutionary significance of inter-ploidy introgression across a diploid - tetraploid hybrid zone, looking for genomic signatures of selection and complementing it with multigenerational manipulated crosses that will allow studying separately the contribution of different components to overall reproductive isolation. By using an interdisciplinary approach combining field research, ex situ experiments, and population genomics on a carefully selected non-model species from the Asteraceae family, we will aim at providing new insights into the reproductive isolation of polyploids. The project builds on a detailed knowledge of the plant system and preliminary data gathered during previous research.

The student will become a member of a gradually forming team led by an early-career group leader and interact with collaborating teams abroad. Strong interest in evolutionary biology and ability to work independently are required, previous experience with manipulated pollinations and bioinformatics is welcome.

Five relevant publications of the research group: 

Čertner, M., Rydlo, J., Dudáš, M. & Hroudová, Z. (2022): A unique diploid – triploid contact zone provides insights into the evolutionary mechanisms of cytotype coexistence in flowering rush (Butomus umbellatus) – Perspectives in Plant Ecology, Evolution and Systematics, 54: 125659.

Morgan, E. J., Čertner, M., Lučanová, M., Deniz, U., Kubíková, K., Venon, A., Kovářík, O., Lafon Placette, C. & Kolář, F. (2021): Disentangling the components of triploid block and its fitness consequences in natural diploid-tetraploid contact zones of Arabidopsis arenosaNew Phytologist, 232: 1449-1462.

Čertner, M., Sudová, R., Weiser, M., Suda, J. & Kolář, F. (2019): Ploidy-altered phenotype interacts with local environment and may enhance polyploid establishment in Knautia serpentinicola (Caprifoliaceae) – New Phytologist, 221(2): 1117-1127.

Kolář, F., Čertner, M., Suda, J., Schönswetter, P. & Husband, B. (2017): Mixed-ploidy species: Progress and opportunities in polyploid research – Trends in Plant Science, 22(12): 1041-1055.

Čertner, M., Fenclová, E., Kúr, P., Kolář, F., Koutecký, P., Krahulcová, A. & Suda, J. (2017): Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids – Annals of Botany, 120(2): 303-315.

Deadline is closed

Don’t hesitate, submit an application now!

Choose your specialization